Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 8 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
There are no files associated with this item.
DC FieldValueLanguage
dc.contributor.authorHeo, K-
dc.contributor.authorPark, JW-
dc.contributor.authorYang, JE-
dc.contributor.authorKoh, J-
dc.contributor.authorKwon, JH-
dc.contributor.authorJhon, YM-
dc.contributor.authorKim, M-
dc.contributor.authorJo, MH-
dc.contributor.authorHong, S-
dc.date.accessioned2016-04-01T02:54:41Z-
dc.date.available2016-04-01T02:54:41Z-
dc.date.created2010-05-10-
dc.date.issued2010-04-09-
dc.identifier.issn0957-4484-
dc.identifier.other2010-OAK-0000021207-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/25970-
dc.description.abstractRecently, integrated flexible devices based on silicon nanowires (Si-NWs) have received significant attention as high performance flexible devices. However, most previous assembly methods can generate only specifically-shaped devices and require unconventional facilities, which has been a major hurdle for industrial applications. Herein, we report a simple but very efficient method for assembling Si-NWs into virtually generally-shape patterns on flexible substrates using only conventional microfabrication facilities, allowing us to mass-produce highly flexible low-noise devices. As proof of this method, we demonstrated the fabrication of highly bendable top-gate transistors based on Si-NWs. These devices showed typical n-type semiconductor behaviors, and exhibited a much lower noise level compared to previous flexible devices based on organic conductors or other nanowires. In addition, the gating behaviors and low-noise characteristics of our devices were maintained, even under highly bent conditions.-
dc.description.statementofresponsibilityX-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.relation.isPartOfNANOTECHNOLOGY-
dc.titleLarge-scale assembly of highly flexible low-noise devices based on silicon nanowires-
dc.typeArticle-
dc.contributor.college첨단재료과학부-
dc.identifier.doi10.1088/0957-4484/21/14/145302-
dc.author.googleHeo, Kwang-
dc.author.googlePark, Jee Woo-
dc.author.googleYang, Jee-Eun-
dc.author.googleKoh, Juntae-
dc.author.googleKwon, Ji-Hwan-
dc.author.googleJhon, Young Min-
dc.author.googleKim, Miyoung-
dc.author.googleJo, Moon-Ho-
dc.author.googleHong, Seunghun-
dc.relation.volume21-
dc.relation.issue14-
dc.contributor.id10176415-
dc.relation.journalNANOTECHNOLOGY-
dc.relation.indexSCI급, SCOPUS 등재논문-
dc.relation.sciSCI-
dc.collections.nameJournal Papers-
dc.type.rimsART-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.21, no.14-
dc.identifier.wosid000275652200016-
dc.date.tcdate2019-02-01-
dc.citation.number14-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume21-
dc.contributor.affiliatedAuthorPark, JW-
dc.contributor.affiliatedAuthorJo, MH-
dc.identifier.scopusid2-s2.0-77949558933-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc4-
dc.description.scptc5*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessN-
dc.type.docTypeArticle-
dc.subject.keywordPlusTHIN-FILM TRANSISTORS-
dc.subject.keywordPlusSEMICONDUCTOR NANOWIRES-
dc.subject.keywordPlus1/F NOISE-
dc.subject.keywordPlusARRAYS-
dc.subject.keywordPlusELECTRONICS-
dc.subject.keywordPlusNANOTUBES-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

조문호JO, MOON HO
Dept of Materials Science & Enginrg
Read more

Views & Downloads

Browse