Open Access System for Information Sharing

Login Library

 

Article
Cited 142 time in webofscience Cited 180 time in scopus
Metadata Downloads

A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting SCIE SCOPUS

Title
A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting
Authors
Park, JYChoi, JCShim, JHLee, JSPark, HKim, SWDoh, JCho, DW
Date Issued
2014-09
Publisher
IOP PUBLISHING LTD
Abstract
Bioprinting is a promising technique for engineering composite tissues, such as osteochondral tissues. In this study, as a first step toward bioprinting-based osteochondral tissue regeneration, we systematically examined the behavior of chondrocytes and osteoblasts to hyaluronic acid (HA) and type I collagen (Col-1) hydrogels. First, we demonstrated that cells on hydrogels that were comprised of major native tissue extracellular matrix (ECM) components (i.e. chondrocytes on HA hydrogels and osteoblasts on Col-1 hydrogels) exhibited better proliferation and cell function than cells on non-native ECM hydrogels (i.e., chondrocytes on Col-1 hydrogels and osteoblasts on HA hydrogels). In addition, cells located near their native ECM hydrogels migrated towards them. Finally, we bioprinted three-dimensional (3D) osteochondral tissue-mimetic structures composed of two compartments, osteoblast-encapsulated Col-1 hydrogels and chondrocyte-encapsulated HA hydrogels, and found viability and functions of each cell type were well maintained within the 3D structures up to 14 days in vitro. These results suggest that with proper choice of hydrogel materials, bioprinting-based approaches can be successfully applied for osteochondral tissue regeneration.
URI
https://oasis.postech.ac.kr/handle/2014.oak/26852
DOI
10.1088/1758-5082/6/3/035004
ISSN
1758-5082
Article Type
Article
Citation
BIOFABRICATION, vol. 6, no. 3, 2014-09
Files in This Item:
There are no files associated with this item.

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

도준상DOH, JUN SANG
Dept of Mechanical Enginrg
Read more

Views & Downloads

Browse