Open Access System for Information Sharing

Login Library

 

Article
Cited 205 time in webofscience Cited 213 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorLee, JH-
dc.contributor.authorBristowe, NC-
dc.contributor.authorLee, JH-
dc.contributor.authorLee, SH-
dc.contributor.authorBristowe, PD-
dc.contributor.authorCheetham, AK-
dc.contributor.authorJang, HM-
dc.date.accessioned2017-07-19T12:47:19Z-
dc.date.available2017-07-19T12:47:19Z-
dc.date.created2016-07-26-
dc.date.issued2016-06-28-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/36442-
dc.description.abstractHybrid perovskites are currently the fastest growing photovoltaic technology, having reached a solar cell efficiency of over 20%. One possible strategy to further improve the efficiency of perovskite solar cells is to tune the degree of octahedral tilting of the halide frame, since this in turn affects the optical band gap and carrier effective masses. It is commonly accepted that the ion sizes are the main control parameter influencing the degree of tilting in perovskites. Here we re-examine the origin of octahedral tilts in halide perovskites from systematic first-principles calculations. We find that while steric effects dominate the tilt magnitude in inorganic halides, hydrogen bonding between an organic A-cation and the halide frame plays a significant role in hybrids. For example, in the case of MAPbI(3), our calculations suggest that; without the contribution from hydrogen bonding, the octahedra would not tilt at all. These results demonstrate that tuning the degree of hydrogen bonding can be used as an additional control parameter to optimize the photovoltaic properties of perovskites.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfChemistry of Materials-
dc.titleResolving the Physical Origin of Octahedral Tilting in Halide Perovskites-
dc.typeArticle-
dc.identifier.doi10.1021/ACS.CHEMMATER.6B00968-
dc.type.rimsART-
dc.identifier.bibliographicCitationChemistry of Materials, v.28, no.12, pp.4259 - 4266-
dc.identifier.wosid000378973100017-
dc.date.tcdate2019-02-01-
dc.citation.endPage4266-
dc.citation.number12-
dc.citation.startPage4259-
dc.citation.titleChemistry of Materials-
dc.citation.volume28-
dc.contributor.affiliatedAuthorJang, HM-
dc.identifier.scopusid2-s2.0-84976552408-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc58-
dc.description.scptc36*
dc.date.scptcdate2018-05-121*
dc.description.isOpenAccessY-
dc.type.docTypeArticle-
dc.subject.keywordPlusGROUP-THEORETICAL ANALYSIS-
dc.subject.keywordPlusINITIO MOLECULAR-DYNAMICS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusSOLAR-CELLS-
dc.subject.keywordPlusPHASE-TRANSITIONS-
dc.subject.keywordPlusINTERPLAY-
dc.subject.keywordPlusRULES-
dc.subject.keywordPlusLIGHT-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher

장현명JANG, HYUN MYUNG
Div of Advanced Materials Science
Read more

Views & Downloads

Browse