Open Access System for Information Sharing

Login Library

 

Article
Cited 9 time in webofscience Cited 10 time in scopus
Metadata Downloads
Full metadata record
Files in This Item:
DC FieldValueLanguage
dc.contributor.authorSung, SJ-
dc.contributor.authorLee, PR-
dc.contributor.authorKim, JG-
dc.contributor.authorRyu, MT-
dc.contributor.authorPark, HM-
dc.contributor.authorChung, JW-
dc.date.accessioned2015-06-25T01:30:52Z-
dc.date.available2015-06-25T01:30:52Z-
dc.date.created2015-02-04-
dc.date.issued2014-08-25-
dc.identifier.issn0003-6951-
dc.identifier.other2015-OAK-0000031048en_US
dc.identifier.urihttps://oasis.postech.ac.kr/handle/2014.oak/9791-
dc.description.abstractDespite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E-g) at DP in a controlled way by depositing positively charged Na+ ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na+ ions is found to deplete the pi* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E-g. The band gap increases with increasing Na+ coverage with a maximum E-g >= 0: 70 eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na+ ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na+ ions, which may play a vital role in utilizing graphene in future nano-electronic devices. (C) 2014 AIP Publishing LLC.-
dc.description.statementofresponsibilityopenen_US
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.relation.isPartOfAPPLIED PHYSICS LETTERS-
dc.rightsBY_NC_NDen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.0/kren_US
dc.titleBand gap engineering for graphene by using Na+ ions-
dc.typeArticle-
dc.contributor.college물리학과en_US
dc.identifier.doi10.1063/1.4893993-
dc.author.googleSung, SJen_US
dc.author.googleLee, PRen_US
dc.author.googleChung, JWen_US
dc.author.googlePark, HMen_US
dc.author.googleRyu, MTen_US
dc.author.googleKim, JGen_US
dc.relation.volume105en_US
dc.relation.issue8en_US
dc.contributor.id10052578en_US
dc.relation.journalAPPLIED PHYSICS LETTERSen_US
dc.relation.indexSCI급, SCOPUS 등재논문en_US
dc.relation.sciSCIen_US
dc.collections.nameJournal Papersen_US
dc.type.rimsART-
dc.identifier.bibliographicCitationAPPLIED PHYSICS LETTERS, v.105, no.8-
dc.identifier.wosid000342753500020-
dc.date.tcdate2019-01-01-
dc.citation.number8-
dc.citation.titleAPPLIED PHYSICS LETTERS-
dc.citation.volume105-
dc.contributor.affiliatedAuthorChung, JW-
dc.identifier.scopusid2-s2.0-84907341924-
dc.description.journalClass1-
dc.description.journalClass1-
dc.description.wostc8-
dc.description.scptc8*
dc.date.scptcdate2018-10-274*
dc.type.docTypeArticle-
dc.subject.keywordPlusEPITAXIAL GRAPHENE-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusTRANSISTORS-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusNANORIBBONS-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordPlusMONOLAYER-
dc.subject.keywordPlusWAFER-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-

qr_code

  • mendeley

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Views & Downloads

Browse